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Simulation of Transverse Instabilities in the NSLS-II Storage Ring* 

 

S. Krinsky 

NSLS, Brookhaven National Laboratory, Upton, NY 11973 

 
Abstract 

We have carried out computer simulations using MATLAB to study the transverse 

coupled-mode instability (TMCI) in the proposed NSLS-II storage ring.  Our calculations 

have been performed using transverse short-range wakefields describing: a broad-band 

resonator; a resistive wall with normal surface impedance; and a chamber wall with 

extreme anomalous skin effect. We have considered: (1) the ring with a single-frequency 

RF system for which the equilibrium longitudinal bunch distribution is Gaussian; and (2) 

the ring with a third harmonic (Landau) cavity included to lengthen the bunch.  Based on 

current NSLS-II design parameters, we report estimates of the TMCI threshold behavior.  

All of our results for the instability threshold (at zero chromaticity) are consistent (to 

about %30± ) with the simple relation 

                                                  7.0
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where ⊥κ  is the transverse kick factor, th
eN  is the number of electrons in the bunch at 

threshold, yβ  is the vertical betafunction at the impedance, and 2mcγ  is the electron 

energy.  For a single-frequency RF system, sν  is the synchrotron tune, while for a 

Landau cavity, sν  is the synchrotron tune of an electron with synchrotron amplitude 

equal to the rms bunch length. 
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1.  Introduction 

 In this note, we describe computer simulations using MATLAB to study 

transverse instabilities in the proposed NSLS-II storage ring.  In order to investigate the 

single-bunch transverse coupled mode instability (TMCI) [1-8], we have incorporated 

transverse short-range wakefields [9,10] describing: (1) a broad-band resonator; (2) a 

resistive wall with normal surface impedance; and (3) a resistive wall with extreme 

anomalous skin effect.  To facilitate study of coupled bunch instabilities, we have 

included normal and extreme-anomalous long-range resistive wall wakefields coupling 

different bunches via their transverse center of mass motion.  Of special concern in this 

study are the wakefields arising from warm and superconducting small-gap undulators 

which are the primary sources of radiation for NSLS-II. 

 The program provides a description of instabilities in the cases: (1) when the ring 

has a single-frequency RF system and the equilibrium longitudinal bunch distribution is 

Gaussian; (2) when there is a higher harmonic (Landau) cavity [11] included to lengthen 

the bunch.  Based on current NSLS-II design parameters, we report estimates of the 

TMCI threshold behavior.  In the case of a broad-band resonator, we have checked that 

our results are in reasonable agreement with the frequency-domain code MOSES [4]. 

 

2. Equations of Motion 

 We consider the motion of bn bunches, each comprised of pn  macroparticles, 

over rn  revolutions around the ring.  The integrated effect of the wakefield is applied to 

the beam once per revolution.  We denote the revolution period 0T , angular revolution 

frequency 00 /2 Tπω = , momentum compaction α , synchrotron oscillation tune 

0/ωων ss = , vertical betatron tune of the synchronous particle y0ν , vertical chromaticity 

yξ , and the vertical beta-function at the point of wakefield interaction yβ . We introduce 

the revolution number rni ,,1K= , the bunch number, bnj ,,1K= , and the macroparticle 

number pnk ,,1K= .  For the thk  macroparticle in the thj  bunch on the thi  revolution: 

the temporal deviation from the synchronous particle is ( )kji ,τ  (positive indicates the 

macroparticle is in front of the synchronous particle); the fractional energy deviation is 
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( )kji ,ε ; the vertical displacement is ( )kjyi , ; the vertical angle is ( ) ( )kjykjp ii ,', = ; 

and the vertical betatron tune is ( )kjiy ,,ν .   

 The transverse wakefield is denoted ( )sw⊥ .  Electron “1” with vertical 

displacement 1y  induces a change in vertical angle '2y∆ of electron “2” a distance s 

behind the first, while traveling a distance l∆  on the ring orbit, where 

                                                       
( )

12

2

2 ' y
cm
zwey

γ
l∆

=∆ ⊥ .                                               (2.1) 

We shall write the transverse wake in the form 

                                                ( ) ( )sfWsw 0=∆⊥ l ,                                                         (2.2) 

where ( )sf  is a dimensionless function. We define the dimensionless strength parameter, 
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with eN  being the number of electrons in a bunch.  The number of electrons per 

macroparticle is pe nN / . 

In the case of a single frequency RF system, the equations of motion are given by: 

                        ( ) ( ) ( ) ( )kj
T

kjkj i
s
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εε +=+                                                     (2.4)  

                        ( ) ( ) ( )kjTkjkj iii ,,, 101 ++ −= εαττ                                                          (2.5) 

                         ( ) ( )kjkj iyiy ,, 0, εξνν +=                                                                     (2.6) 
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Here, we have defined  

                                          ( ) jinij b +−= 1                                                                     (2.9) 
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and 
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n
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1

_

∑
=

= .                                                        (2.10a) 

 Initial values are determined from a Gaussian random number generator: temporal 

displacements ( )kj,0τ  have standard deviation tσ ;  energy deviations ( )kj,0ε  have 

standard deviation ασωνσε /0 ts= ; vertical displacements ( )kjy ,0  have standard 

deviation yyy εβσ = ; and the vertical angular deviations ( )kjp ,0  have standard 

deviation yyy βεσ /'= . 

 While tracking the particles, for each bunch we save the values of the center of 

mass displacement, )(
_

ijy , and the rms deviation ( )ijyrms  of the electrons from the center 

of mass,   where                 

                                   ( ) ( ) ( )∑
=
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⎡ −=
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p
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n
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We carry out a fast Fourier transform of the center of mass displacements and plot the 

resulting spectral amplitudes in the region near the betatron sidebands. 

 For a resonator [10], with transverse shunt impedance ( )mohmR /⊥ , quality 

factor ⊥Q  and resonant frequency ckrr =ω , 

                                   ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
−=

⊥⊥
24

11sin
2

exp
Q

sk
Q

sk
sf r

rres ,                              (2.11) 

and 

                              

4
12

0

−
=

⊥

⊥

Q

RW rres ω ,     
s

res
yeres

mc
WNe
νγ

β
2

0
2

8
=Υ .                                    (2.12) 



 6

                                 
2 4 6 8 10 12 14

krs

0.1

0.2

0.3

0.4

fres

 
Figure 1.  Shape of wakefield for broadband resonator with 1=⊥Q . 

 

 For the normal transverse resistive wall wakefield [12] of a warm circular tube of 

length L , radius b and conductivity σ  ,  
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To speed calculations, we use the approximation             
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For 0ss >> , 
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 For a superconducting circular tube the wakefield [13] is determined by the 

extreme anomalous skin effect and 
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where we define 
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To increase the speed of calculation, we use the approximation      
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Figure 2.  Comparison of shape functions for normal resistive wall wakefield (warm, 

0/ ss=ξ ) and wakefield for extreme anomalous skin effect (cold, ass /=ξ ). 
 

2 4 6 8 10

0.25

0.5

0.75

1

1.25

1.5

1.75 Warm

Cold

ξ 

( )ξrwf

( )ξeasef



 9

3.   Threshold Condition for Transverse Coupled Mode Instability 

The simulations reported in the following sections, support the use of a simple 

approximation to estimate the threshold of the transverse mode coupling instability.   If 

the center of mass of an electron bunch containing eN  electrons has transverse 

displacement cmy  from the axis, the transverse angular kick experienced by its center of 

mass is given by 

                                                 ⊥= κ
γ cm

e
cm y

cm
Ne

y 2

2

'  ,                                                    (3.1) 

where the transverse kick factor ⊥κ  is expressed in terms of the wake field by 

                                          ( ) ( ) ( ) l∆−= ⊥

∞

∞− ∞−
⊥ ∫ ∫ ''' sswsFsFdsds

s

κ ,                                  (3.2) 

and ( )sF  is the normalized bunch density.  The kick factor can also be determined in 

terms of the transverse impedance via 

                                              ( ) ( )kZkFdkc
⊥

∞

⊥ ∫= Im
2~

0π
κ ,                                           (3.3) 

where ( )kF
~

 is the Fourier transform of the bunch density normalized by ( ) 10
~

=F .   

Let us define an average transverse coherent tune shift (divided by the 

synchrotron tune sν ) via 
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For the fundamental RF system, our simulations show that the threshold occurs when 

( ) av
sy νν /∆ has a value between 0.45 and 1.  Therefore to an accuracy of about %30± , 

the threshold is determined by 

                                                   7.0
4 2

2

=⊥κνγπ
β
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ye

cm
Ne

.                                               (3.5) 

We have confirmed this by simulations using wakefields corresponding to a broad-band 

resonator, resistive wall and extreme anomalous skin effect.  It is reasonable to expect 

that this approximation will be useful for more general wakefields.   
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The kick factor corresponding to a resonant wakefield can be approximated in the 

two limits 1<<srk σ  and 1>>srk σ .  From Eq. (3.2), one finds 

                        ( ) ( )( ) ( ) l∆+−≅ ⊥
∞−

∞

∞−
⊥ ∫∫ 0''' wsssFsFdsds

s
resκ ,    ( )1<<srk σ                    (3.6) 

and from Eq. (3.3), 
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For a ring with only the fundamental RF, the longitudinal bunch 
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⎠

⎞
⎜⎜
⎝

⎛
−= 2

2

2
exp

2
1

ss

ssF
σσπ

.  It then follows from Eqs. (3.6) that 
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and frm (3.7) that 

                                      
⊥

⊥
⊥ ≅

Q
Rc

s

res

σπ
κ

2
                      ( )1>>srk σ               (3.9) 

We see that when 1<<srk σ , the kick factor increases linearly with bunch length and 

quadratically with frequency.  When 1>>srk σ , the kick factor is inversely proportional 

to bunch length and independent of frequency.   

For the resistive wall wakefield, we use Eqs. (2.18) and (3.2) to approximate the 

the kick factor by 

                                           
s
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4
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and for the extreme anomalous skin effect, we use Eqs. (2.24) and (3.2) to show that 
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 When a Landau cavity is used, the synchrotron tune depends linearly on the 

oscillation amplitude. We define s

_
ν  to be the synchrotron frequency of an electron with 

oscillation amplitude equal to the rms bunch length.  From simulation, we find that a 

useful approximation to the threshold condition is 
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                                                     7.0
4

_
2

2

=⊥κ
νγπ

β

s

ye

cm

Ne
,                                           (3.12) 

where the kick factor is evaluated using the appropriate electron distribution: 

( ) ( )4
^

exp sNsF λ−= , where ( )4/1
2 4/1^

Γ
=

λN  , and the rms bunch length ( )
( )4/1
4/3

2/1
2

Γ
Γ

=Σ
λs  .  

The Landau cavity is operated under conditions such that ss νν <<
_

 and ss σ>>Σ .  It 

follows from Eqs. (3.6) and (3.7) that 
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and 

                                      
⊥

⊥
⊥ Σ

≅
Q
Rc

s

res 27.0κ                       ( )1>>Σ srk             (3.14) 

Hence, for a resonant wake field with 1<<Σ srk , we see from Eqs. (3.4), (3.8), (3.12) 

and (3.13) that the ratio of the threshold currents with and without the Landau cavity is 
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σ
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ν
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.                                                  (3.15) 

In this case the Landau cavity can greatly reduce the instability threshold. For a resonant 

wake with 1>>srk σ , it follows from Eqs. (3.4), (3.9), (3.12) and (3.14) that 
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In this case the Landau cavity has only a small effect on the threshold current since the 

two factors in Eq. (3.13) approximately offset one another.   

For a resistive wall wake, the kick factor with a Landau cavity is 
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and for the anomalous skin effect wake 
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It then follows that the ratio of the threshold currents with and without the Landau cavity 

is given by 

                                                        
p
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s
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4. Illustrative Parameters for NSLS-II  
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5. Simulation Results: Broad Band Resonance, Fundamental RF 

Resonator:  GhzfQmMR r 10,1,/0.1 ==Ω= ⊥⊥  

10000,100 == rp nn  

     
threshold current between 1.05 and 1.10 ma 
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  Resonator:  GhzfQmMR r 30,1,/0.1 ==Ω= ⊥⊥  

   10000,300 == rp nn  

 

 
threshold current between 0.70 and 0.75 ma 
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Resonator:  GhzfQmMR r 50,1,/0.1 ==Ω= ⊥⊥  

   10000,500 == rp nn  

 

    
threshold current between 0.80 and 0.85 ma 
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Resonator:  GhzfQmMR r 100,1,/0.1 ==Ω= ⊥⊥  

   10000,1000 == rp nn  

   
threshold current between 0.90 and 0.95 ma 
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Resonator:  ( )GHzfQmMR r,1,/0.1 =Ω= ⊥⊥  

( )GHzfnn rpr ×== 10,10000  

fr(GHz) Ith(ma)           
1  47 
3  6.1 
5  2.66 
10  1.07 
12  0.91 
15  0.79 
20  0.72 
30  0.72 
40  0.78 
50  0.84 
60  0.85 
70  0.88 

100  0.92        Minimum threshold current corresponds to Ghzf
t

r 261
=≈

σπ
. 

 
I have checked that in this case of a broadband resonator wake and the fundamental RF, 

my simulation results are in reasonable agreement with the frequency domain code 

MOSES [4]. 
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6. Simulation Results: Resistive Wall, Fundamental RF 

 

Resistive Wall: 10000=rn  

pn  thI    

100 1.66 ma 

200 1.70 

400 1.71 

Resistive wall:  10000,200 == rp nn  
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7. Simulation Results: Extreme Anomalous Skin Effect, Fundamental 

RF 

Extreme Anomalous Skin Effect: 10000=rn  

pn  thI  

100 6.36 

200 6.74  

400 6.79     

Extreme Anomalous Skin Effect:  10000,200 == rp nn  
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8. Third-Harmonic (Landau) Cavity 

 Let us begin by reviewing the operation of a harmonic, bunch-lengthening cavity.  

The fundamental cavity operates at an angular frequency, 0ωω hrf = , where h is an 

integer and 00 /2 Tπω =  is the angular frequency of revolution. Assuming the Landau 

cavity is operating at the thn  harmonic of the frequency of the fundamental RF, the 

voltage seen by an electron with temporal deviation τ  is 

                                ( ) ( ) ( )[ ]nrfsrf nVV φωκφτωτ +++= sinsin0 .                                   (8.1) 

In the ideal operation of such a cavity, one chooses to satisfy the conditions 

                                  
[ ]

.sinsin0
coscos0

sinsin00

ns

ns

ns

n
n

VU

φκφ
φκφ
φκφ

+=
+=

+=
                                                             (8.2) 

In this case, the voltage has the form 

            ( ) ⎟
⎠
⎞

⎜
⎝
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⎠
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⎜
⎝
⎛ −= τωτωφτωτωφτ rfrfsrfrfs n

n
n

n
V cos1cossinsin1sincos 2 .          (8.3) 

Approximating this for small τ  yields the cubic form 
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 The equations of motion become 
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Together, these two equations imply 

                                                    0=+
••

τρτ .                                                                 (8.6) 

where 
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The solution to Eq. (8.6) can be written in terms of an elliptic function of modulus ½, 

                                       ( ) ( )2/1; 2 == ktrcnrt ρτ .                                                    (8.9) 

The synchrotron frequency has a linear dependence on the oscillation amplitude r,  

                                                  r
Ks ρπω

2
= ,                                                           (8.10) 

where the elliptic integral ( ) ( )
( ) 85.1
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 The equilibrium distribution determined by radiation damping and quantum 
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, and  the rms bunch duration tΣ  

is given by 
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It is useful to define s

_
ν  to be the synchrotron tune corresponding to a synchrotron 

oscillation amplitude equal to the rms bunch duration, tΣ , i.e. 

                                                   ts
K

Σ≡ 2
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_

2 ω
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Then one can write 
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For NSLS-II parameters: 

h 1000 

n 3 

refν  0.004 

ρ  427 sec101.2 −×  

st ΣΣ /  50 ps  /  15 mm 

  s

_
ν  

0.0006 
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 In order to carry out simulations to study the transverse instabilities with a third-

harmonic Landau cavity, we use Eqs.(2.5-2.10) and replace Eq. (2.4) by 

                                        ( ) ( ) ( )33
0

1 ,,, kj
T
bkjkj iii τ

α
εε +=+  ,                                    (2.4a) 

where  
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The initial conditions for the transverse motion are determined in the same manner as for 

the case when there is only the fundamental RF cavity.  However, in order to determine 

initial conditions for the longitudinal motion, we carry out a short simulation to obtain a 

thermal distribution.  In order to accomplish this, we use the equations of motion: 
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Here, a is the inverse damping time and nu is Gaussian random variable with standard 

deviation 

                                               εσσ au 2= .                                                                (8.16) 

We start this simulation with nn τε ,  distributed according to a Gaussian distribution.  The 

final equilibrium values are very insensitive to the starting values.  We then use the final 

values as initial conditions for the simulation of the transverse instabilities with a Landau 

cavity. 
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9. Simulation Results: Broad Band Resonance, Landau Cavity 

 

Resonator:  40000,1,/0.1 ==Ω= ⊥⊥ rnQmMR  

 

fr(GHz) Ith(ma)  np 

1  1.95  200 

  1.95  400 

 

2  0.80-0.85 100 

  0.70-0.75 200 

  0.70-0.75 400 

 

3  0.50-0.60 100 

  0.45  200 

  0.45-0.50 400 

 

5  0.40-0.45 100 

  0.30-0.35 200 

  0.30-0.40 400 

 

7  0.6-0.7  100 

  0.5-0.6  200 

  0.5-0.6  400 

 

10  0.8-1.0  100 

  0.7-0.8  200 

  0.7-0.8  400 

 

complicated behavior observed, slow growth rate near threshold, sometimes stable region 

found at higher current than first observation of instability,  
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10. Simulation Results: Resistive Wall, Landau Cavity 

Resistive Wall: 40000=rn  

pn  thI    

100 0.65 ma 

200 0.46  

400 0.46  
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11. Simulation Results: Extreme Anomalous Skin Effect, Landau Cavity 

Extreme Anomalous Skin Effect: 40000=rn  
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200 2.3  

400 2.4  
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12. Summary of Results 
We summarize the results obtained using the NSLS-II parameters as given in Section 4.  

Threshold currents for different parameters can be estimated using the scaling relations 

(3.4) and (3.12). 

 

Fundamental RF 

Synchrotron Tune   004.=sν  

Bunch length       mms 6.3=σ  

Vertical betafunction   my 3=β  

Resistive wall (100m of room temperature copper, mmb 5.2= )     ( ) mamaIth 7.1=  

Extreme Anomalous Skin Effect   ( ) mamaIth 8.6=  

Broad-Band Resonator  1,/1 =Ω= ⊥⊥ QmMR   
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Landau Cavity 

Average Synchrotron Tune   0006.
_

=sν  

Bunch length       mms 15=Σ  

Vertical betafunction   my 3=β  

Resistive wall  (100m of room temperature copper, mmb 5.2= )   ( ) mamaIth 46.0=  

Extreme Anomalous Skin Effect   ( ) mamaIth 4.2=  

Broad-Band Resonator  1,/1 =Ω= ⊥⊥ QmMR  
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13. Concluding Remarks 

In this note, we have described a computer simulation program written with MATLAB. 

Using this program, we have carried out studies of the TMCI single bunch instability for 

NSLS-II, in the case of vanishing chromaticity.  In the future, we plan to investigate the 

stabilizing effect of positive chromaticity.  We also plan to include the effect of 

wakefields coupling the center of mass motion of different bunches.   

 

Acknowledgements 

I wish to thank Boris Podobedov, Nathan Towne and Juinn Ming Wang for helpful 

discussions.  This work was supported by Department of Energy contract DE-AC02-

98CH10886. 



 33

References 

[1]  A.W. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators 

(Wiley, NY, 1993). 

 [2]  R.D. Ruth and J.M. Wang, “Vertical Fast Blow-up in a Single Bunch,” IEEE Trans. 

Nucl. Sci. NS-28, 2405 (1981). 

[3]  Y.H. Chin, “Transverse Mode Coupling Instabilities in the SPS,” CERN/SPS/85-2. 

[4]  Y.H. Chin, “Users Guide for New Moses,” CERN/LEP-TH/88-05. 

[5]  K.C. Harkay, M. Borland, Y.C. Chae, L. Emery, Z. Huang, E.S. Lesser, A.H. 

Lumpkin, S.V. Milton, N.S. Sereno, B.X. Yang, “Impedance and the Single Bundh Limit 

in the APS Storage Ring,”  Proc. PAC1999, 1644 (1999). 

[6]  J.L. Revol, R. Nagaoka, P. Kernel, L. Tosi, E. Karantzoulis, “Comparison of 

Transverse Single Bunch Instabilities Between the ESRF and ELETTRA,”  Proc. 

EPAC2000, 1170 (2000). 

[7]  K. Harkay, R. Nagaoka, J.L. Revol, T. Nakamura, “A Preliminary Comparison Of 

Beam Instabilities Among ESRF, APS, and SPRING-8 X-Ray Storage Ring Light 

Sources,” Proc. EPAC2002, 1505 (2002). 

[8] R. Nagaoka,  “Study of Resistive-Wall Effects on SOLEIL,” Proc. EPAC 2004, 2035 

(2004).  

[9]  G.V. Stupakov, “Wake and Impedance,” SLAC-PUB-8683 (2000). 

[10]  B.W. Zotter and S.A. Kheifets, Impedances and Wakes in High-Energy Particle  

Accelerators (World Scientific, Singapore, 1998). 

[11]  Y.H. Chin, “Transverse Mode Coupling Instability in a Double RF System,”  Part. 

Accel. 45, 209 (1994). 

[12]  K. Bane and M. Sands, “The Short-Range Resistive Wall Wakefields,” Proc. Micro 

Bunches Workshop, 131 (1995). 

[13]  B. Podobedov, private communication. 

 




